A priori bounds for positive solutions of a semilinear elliptic equation
نویسندگان
چکیده
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملSeparation property of solutions for a semilinear elliptic equation
In this paper, we study the following elliptic problem ∆u+K(x)u p = 0 in R u > 0 in R (∗) where K(x) is a given function in Cα(R \ 0) for some fixed α ∈ (0, 1), p > 1 is a constant. Some existence, monotonicity and asymptotic expansion at infinity of solutions of (∗) are discussed. ∗Research supported in part by the Natural Science Foundation of China and NSFC †Research supported in part b...
متن کاملA Priori Estimates of Positive Solutions for Sublinear Elliptic Equations
In this paper, a priori estimates of positive solutions for sublinear elliptic equations are given in terms of thicknesses of domains. To this end, a supersolution is constructed by a composite function of a solution to an ordinary differential equation and a distance function. The results work efficiently in the case where the domain is an exterior or an interior of a convex set.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملNon variational elliptic systems in dimension two: a priori bounds and existence of positive solutions
We establish a priori bounds for positive solutions of semilinear elliptic systems of the form −∆u = g(x, u, v) , in Ω −∆v = f(x, u, v) , in Ω u > 0 , v > 0 in Ω u = v = 0 on ∂Ω where Ω is a bounded and smooth domain in R. We obtain results concerning such bounds when f and g depend exponentially with respect to u and v. Based on these bounds, existence of positive solutions is proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1985
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1985-0796444-0